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a b s t r a c t

A new stochastic optimization model under modeling uncertainty (SOMUM) and parameter certainty
is applied to a practical site located in western Canada. Various groundwater remediation strategies
under different significance levels are obtained from the SOMUM model. The impact of modeling uncer-
tainty (proxy-simulator residuals) on optimal remediation strategies is compared to that of parameter
eywords:
roundwater remediation
emediation design
odeling uncertainty

uncertainty (arising from physical properties). The results show that the increased remediation cost for
mitigating modeling-uncertainty impact would be higher than those from models where the coefficient
of variance of input parameters approximates to 40%. This provides new evidence that the modeling
uncertainty in proxy-simulator residuals can hardly be ignored; there is thus a need of investigating and
mitigating the impact of such uncertainties on groundwater remediation design. This work would be
helpful for lowering the risk of system failure due to potential environmental-standard violation when

ndw

etroleum contaminants

determining optimal grou

. Introduction

A complete description of a stochastic optimization model under
odeling uncertainty and parameter certainty (SOMUM) has been

rovided in the first companion paper. In this part, a practical
etroleum-contaminated site in western Canada will be used as
case study to demonstrate the applicability of the model. To

egin, results from modeling calibration and verification, hypo-
hetical tests and optimal design will be presented in detail. The
ptimization results obtained from the SOMUM model will then
e compared to those from: (a) stochastic optimization mod-
ls accounting for physical-property (or parameter) uncertainty
SOMUP) [1,2] and (b) a deterministic optimization model (DOM)
nder certainty (i.e. no uncertainty is addressed) [3]. Through the
omparison, the impacts of modeling and parameter uncertainties
n optimal design strategies can be investigated. The implicit in the
odeling effort will also be discussed.
The site is located approximately 20 km north of the Town of

indersley in Canada and has been in operation since the late 1950s.

he previous characterization results indicated that it has com-
lex heterogeneous and anisotropic hydrogeological conditions
nd the soils can be categorized into clay till, silty clay, and sandy
oil (Figure S1 in the supplementary material). Due to oil leak-

∗ Corresponding author: Tel.: +1 416 979 5000x6459; fax: +1 416 979 5122.
E-mail address: li.he@ryerson.ca (L. He).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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ater remediation strategies.
© 2009 Elsevier B.V. All rights reserved.

age, petroleum hydrocarbons were detected in the subsurface. The
major contamination sources included a gas plant on the west side
of the site (S1), a disposal pit formerly located in the northeast quad-
rant of the site (S2), and a recirculating pump close to S1 (S3). In
2000, dual phase vacuum extraction was used in the first stage; this
practice was found to successfully remove the petroleum hydrocar-
bons existing as NAPL (nonaqueous phase liquid) and air phases.
However, the groundwater samples taken from the site indicated
that the BTEX (benzene, toluene, ethyl-benzene and xylenes) con-
centrations still violate the environmental standards issued by the
CCME [4] and SERM [5].

Thus, a pump-and-treat system was recommended in the sec-
ond remediation stage, mainly for controlling the transport of
contaminated groundwater, preventing uninterrupted expansion
of contamination zones, and decreasing the dissolved contaminant
concentrations [7]. The remediation durations were assumed to be
5, 10, 15 and 20 years. This selection was mainly based on the reme-
diation cost and timeframe, compared to other techniques such
as natural attenuation. In situ bioremediation was not considered
either, due to the extremely low temperature in the long winter.
To support optimal design of the pump-and-treat system, a three-
dimensional multiphase multi-component simulator was used to

predict the fate and transport of BTEX in the groundwater.

The detail of the simulator description has been shown in
the first companion paper. The simulation area was considered
as a three-dimensional heterogeneous domain, with an area of
270 m × 225 m and a depth of 10 m (Figure S2 in the supplemen-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:li.he@ryerson.ca
dx.doi.org/10.1016/j.jhazmat.2009.11.061
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ary material). Vertically, the domain was divided into four layers,
hich were 1, 2, 3 and 4 m, respectively. Horizontally, each layer
as discretized into 54 × 45 grid blocks, with each one being
imensions of 5 and 5 m in x, y directions, respectively. The total
umber of grids was thus 9720 (54 × 45 × 4). In the simulation,
on-flow boundary conditions were assigned on the top and at the
ottom of the simulation domain, forming a steady groundwater
ow from northeast to southwest.

. Simulator validation

The identified parameters input to the simulator were classi-
ed into three types: hydrologic parameters, hydrocarbon source
arameters, and control parameters. Site hydrologic parameters,

ncluding hydrologic properties (e.g., water dynamic viscosity,
ater density, water surface tension, average recharge rate, water

aturation, residual water saturation) and porous medium prop-
rties (e.g., hydraulic conductivity in three dimensions, ratio of
orizontal to vertical hydraulic conductivity, porosity, bulk density,
urface ground elevation, groundwater elevation, groundwater
radient and direction, longitudinal dispersivity, transverse disper-
ivity and vertical dispersivity); hydrocarbon source parameters,
ncluding hydrocarbon phase properties (e.g., NAPL density, NAPL
ynamic viscosity, hydrocarbon solubility, aquifer residual NAPL
aturation, vadose zone residual NAPL saturation, soil/water parti-
ion coefficients and NAPL surface tension), dissolved constituent
roperties (e.g., initial concentrations of contaminants in satu-
ated zone, NAPL/water partition coefficient, constituent solubility
nd contaminants’ half-life constants in aquifer) and hydrocarbon
elease information (e.g., NAPL flux, beginning time, ending time,
nd NAPL volume released). Additionally, some control parame-
ers were determined since the numerical method for solving the
imulator was based on finite difference methods with some non-
inear processes. The control parameters included simulation time
orizon, allowable time increment, time interval to write effluent
oncentrations, number of time steps and iterations, termination
onstraints, domain types and definitions, flow or transport simu-
ation selection control, connection and communication between
roperty data and numerical grids, etc.

In validating the simulator, the data of 2001 and 2002 were used
or calibrating the simulator, and those of 2003 were used for verifi-
ation. Our results indicated that the errors between predicted and
bserved benzene concentrations ranged from −13.8 to 248.9 �g/L;
he mean absolute error was 72.78 �g/L and the mean relative error
as 30.02%. The errors for toluene concentrations varied from −2.4

o 22.8 �g/L, with their mean absolute and relative errors being
.72 �g/L and 79.01%, respectively. The mean absolute errors for
thyl-benzene and xylenes were 4.2 and 17.28 �g/L, respectively;
he mean relative errors for the two specifies were 16.68% and
1.26%, respectively. This demonstrated the developed simulator
ould be used in the remediation design as the error levels were
enerally acceptable.

. Results analysis

Simulation results showed that the peak concentration of ben-
ene, toluene, ethyl-benzene and xylenes would be respectively
376.5, 852.3, 2304.2 and 418.4 �g/L 10 years later, if no reme-
iation action was undertaken [6]; these would be a number of
imes higher than the environmental standards. The contamina-
ion would become increasingly serious with the spreading of BTEX

n the groundwater. Thus, the pump-and-treat system was rec-
mmended, with the durations assumed to be 5, 10, 15 and 20
ears. Many factors (including contaminant concentrations of the
njected and extracted water, pumping rates, well number, well
ocation, etc) can influence the optimal remediation strategies. This
aterials 176 (2010) 527–534

study only chose pumping rates as decision variables (i.e. explana-
tory variables). If more factors need to be addressed, they can be
introduced into the inputs of proxy simulators which need to be
re-generated.

Two injection and four extraction wells were determined as
remediation wells from various alternatives (Figure S2 of the sup-
plementary material) as they were located around the contaminant
sources and can be operated rather conveniently. In terms of the
local technical and hydrogeological conditions, pumping rates at
these wells would not be higher than 100 m3/d. The system also
included eight monitoring wells. Note that, the explanatory vari-
ables were normalized in the range 0 and 1 by dividing their
values by 100, and natural logarithms of simulated benzene con-
centrations at the monitoring wells were considered as response
variables. This treatment would be effective in decreasing compu-
tational errors.

According to EEP [6], layers 2–4 would be located in the sat-
urated zone, while layer 1 would be situated in the unsaturated
zone. Since the most serious plume was mainly observed in layer
2, the optimal design only targeted at this layer. Moreover, only a
single species (i.e. benzene) was considered in the case study. This
simplification was based on the findings that (a) the concentrations
of toluene, ethyl-benzene, and xylenes would become lower than
the respective environmental standards once the benzene concen-
tration satisfied the standard (determined to be 0.5 mg/L in this
design); (b) benzene generally has higher toxicity than the other
three contaminants [5].

The proxy simulators were generated via stepwise response sur-
face analysis (SRSA) based on 250 statistical samples obtained from
various runs of the simulator. Because a total of eight monitoring
wells were used as checking points and 4 types of remediation peri-
ods (i.e. 5, 10, 15 and 20 years) were considered, a total of 32 proxy
simulators were created; each one represented the contamination
concentration at one monitoring well for one type of remediation
period. Figs. 1 and 2 present the histograms of residuals generated
by the proxy simulators for wells BH110 and BH109. Since most of
the figures have approximately symmetrical shapes, the normal-
ity of the residuals could be straightforwardly assumed. Although
not shown for the residuals generated from other proxy simulators,
their histograms also revealed that the normality assumption could
be given.

Both JB-test and L-test were performed to verify the normal-
ity of residuals. Fig. 3 presents the calculated JB-statistic values. As
shown in Fig. 3(a), the average JB-statistic value is 1.61, with the
maximum and minimum values being 8.15 and 0.01. Given a sig-
nificance level of 0.05, most of the statistic values are lower than the
critical one (5.99). The only exception occurs at well BH110 where
the JB-statistic is about 8.15; however it is lower than the critical
value (9.20) given the significance level of ˛ = 0.01. Similar results
can also be observed from Fig. 3(b)–(d). Therefore, it is judged the
normality hypothesis can hardly be rejected since all JB-statistic
values are lower than or very near the critical ones given a signifi-
cance level of 0.01. Fig. 4 shows the L-statistic values for residuals
under normality hypothesis. Except for wells BH105, BH107 and
BH116 in Fig. 4(b) and well BH116 in Fig. 4(c) and (d), the statistic
values of all others are lower than the critical value when the sig-
nificance level is 0.05. However, when the significance level equals
0.01, the L-statistic values of all wells are lower than the critical
value, indicating the normality hypothesis for the residuals of the
proxy simulators can also be accepted according to the L-test given
a significance level of 0.01.
Fig. 5 gives the estimated lower and upper bounds of the resid-
uals under a 95% confidence level, when remediation durations
are 5, 10, 15 and 20 years, respectively. It is indicated that the
averaged lower and upper bounds of the mean residuals at the
eight wells range from −0.21 to 0.22. This shows the assumed zero



L. He et al. / Journal of Hazardous Materials 176 (2010) 527–534 529

Fig. 1. Statistic histograms for proxy-simulator residuals at well BH110 (the horizontal axis represents the estimated error, and the vertical axis represents the frequency
falling between the corresponding range). (a) 5 years, (b) 10 years, (c) 15 years, and (d) 20 years.

Fig. 2. Statistic histograms for proxy-simulator residuals at well BH109 (the horizontal axis represents the estimated error, and the vertical axis represents the frequency
falling between the corresponding range). (a) 5 years, (b) 10 years, (c) 15 years, and (d) 20 years.
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Fig. 3. The Jarque–Bera test results. (a) 5 y

ean for all residuals completely falls into the ranges constituted

y the lower and upper bounds. Thus, the zero-mean assumption
an be accepted under a 95% confidence level. The t-test is also
erformed to verify the hypothesis that H0: �0k = 0, �2

k
unspeci-

ed, against H1: �0k /= 0, �2
k

unspecified, where �0k and �2
k

are

Fig. 4. The Lilliefors test results. (a) 5 years, (b
b) 10 years, (c) 15 years, and (d) 20 years.

expected value and variance of the residual generated by the proxy

simulator for well k. As shown in Fig. 5(a), the averaged t-statistic
value is 0.05, with the largest and smallest values being 0.40 and
−4.72 × 10−4, respectively. Similar results can also be observed in
Fig. 5(b)–(d). In comparison, given a significance level of 0.05, the

) 10 years, (c) 15 years, and (d) 20 years.
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Fig. 5. The t-tests results. (a) 5 years,

alue of t0.05/2(50 − 1) is 2.01, indicating the rejection regions of
−∞, −2.01] and [2.01, ∞]. As all of the t-statistic values fall out
f these ranges, the null hypothesis (H0) of �0k = 0 can hardly be
ejected, and accordingly the zero-mean assumption is accepted.
ased on this hypothesis, �2

k
can be estimated by:

2
k =

N∑

u=1

(ek,u − ēk)2

N
(1)

here ek,u is residual of the proxy simulator for well k for sample
; ēk is average of samples ek,u; N is number of samples.

Fig. 6 presents the estimated variances under the zero-mean
ypothesis, which were introduced to formulate the SOMUM

roblem. Fig. 7 shows the optimal pumping strategies under the
onfidence levels of 0.90, 0.95, 0.975 and 0.99. When the reme-
iation period is 5 years (Fig. 7a), wells M3 and M5 would have
he highest pumping rates, with an average value equal to or
ear 100 m3/d. This shows that most of the contaminated ground-

Fig. 6. Estimated variances of the proxy-simulator residuals.
years, (c) 15 years, and (d) 20 years.

water would be extracted from well M5 while most of clean
water would be injected into well M3. Wells M1 and M2 would
also play roles in remediation, with an average pumping rate of
30.0 m3/d approximately. Wells M4 and M6 would have no con-
tribution to the remediation since no contaminated/clean water
would be extracted/injected from/into the wells. When the reme-
diation period is extended to 10 years, the average pumping rates
at wells M3 and M5 would reduce by 44.3% and 71.4%, respec-
tively (Fig. 7b); those at wells M1 and M2 would increase by
1.64 and 1.04 times when the confidence level (�) ranges from
0.90 to 0.99. In comparison, the pumping rates at wells M4 and
M6 would be 0 and 1.54 m3/d, respectively. This shows wells M1,
M2, M3 and M5 would have much more significant contribu-
tion to groundwater remediation than wells M4 and M6. Over
the 15-year period of remediation (Fig. 7c), the average pump-
ing rates would be 47.5, 5.50, 45.2, 0, 1.01 and 2.21 m3/d at the
six wells, respectively. Once the remediation period increases to
20 years, only wells M1 and M3 would be active with the rates
both being 23.3 m3/d (Fig. 7d), and the other wells would be shut
down.

It can also been observed from Fig. 7 that a long remediation
period corresponds to a low total pumping rate. This is because high
volumes of contaminants need to be extracted to lower the ben-
zene concentrations when the duration is short. This would further
enhance the injection rates to maintain a stable hydraulic gradient
of the aquifer. The increases in both extraction and injection rates
would thus cause the growth of pumping rates for shorter-duration
remediation than for longer ones. The effect of � levels on remedia-
tion strategies can also be observed from Fig. 7. For example, when
� rises from 0.90 to 0.99 (5-year period of remediation), the total

pumping rate would increase by 17.6%; it would be enhanced by
2.08, 1.42 and 0.55 times respectively for the 10, 15 and 20 years of
pumping, when � varies from 0.95 to 0.99. This demonstrates that
an increased � level would lead to the growth of total pumping
rate, implying an enhanced remediation cost would be afforded.
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Fig. 7. Optimal remediation strategies. (a) 5

. Models comparison

To compare the impact of modeling uncertainty on remediation
trategies to that of physical-property uncertainty, five scenar-
os were designed which were S1, S2, S3, S4, and S5 (Table 1).
ptimal solutions under scenarios 2 and 3 were solved in terms
f the following procedures: to begin, the Mont-Carlo technique
as used to run the simulator, generating 250 statistical samples

ased on the provided stochastic parameters (shown in Table 1);
he inputs of samples were pumping rates at remediation wells
nd the outputs were probabilities of benzene concentrations at
onitoring wells satisfying the environmental standard. The sam-

les were employed by the SRSA tool to create proxy simulators.
he proxy simulators were then input to model (2) to replace the
nitial Mont-Carlo-based simulator, formulating the following con-
entional SOMUP problem:

inimize TR =
I+J∑

i=1

qi (2a)

.t. 0 ≤ qi ≤ qi,max for all i = I + 1, I + 2, · · ·, I + J (2b)
I

i=1

qi =
I+J∑

i=I+1

qi (2c)

r{cp
k
(q1, q1, . . . , qI+J) ≤ MCL} ≥ � for all k = 1, 2, . . . , K (2d)

able 1
cenarios designed for comparison of uncertainty impacts.

Scenario Residual Porosity Permeabili

DT CV DT CV DT

S1 – – – – –
S2 Log-normal Calculated by Eq. (1) – – –
S3 – – Normal 10% Log-norma
S4 – – Normal 20% Log-norma
S5 – – Normal 40% Log-norma

ote: CV denotes coefficient of variance, which is defined as ratio of standard deviation to
, (b) 10 years, (c) 15 years, and (d) 20 years.

where TR is total pumping rate for all injection/extraction wells; I
and J are numbers of injection and extraction wells, respectively; q1
to qI are decision variables, indicating the pumping rate at injection
wells 1 to I, respectively; qI+1 to qI+J are decision variables, indicat-
ing the pumping rate at extraction wells I + 1 to I + J, respectively;
qi,max is maximum pumping rate for the ith well; Pr represents
the probability of constraint satisfaction; cp

k
is contaminant con-

centration predicted by the proxy simulators for well k; MCL is
maximum contaminant level which is determined in terms of the
given environmental standard; � is confidence level. Model (2) can
be solved through optimization solvers like Lingo as it is a quadratic
programming problem.

Fig. 8 shows the comparison of optimization results for the
remediation periods of 5 and 15 years. As shown in Fig. 8(a), the
total pumping rate would be 165 m3/d when neither modeling
uncertainty nor parameter uncertainty is considered (in scenario
S1). However, when modeling uncertainty is addressed in sce-
nario S2, the total pumping rate would be increased by 43.9%.
In comparison, if only parameter uncertainty is accounted for,
the total pumping rate would be increased by 7.78%, 23.1%, and
56.5% in scenarios S3, S4, and S5, respectively. If assuming the

remediation cost is proportional to the total pump rate, then this
implies the increased remediation cost for mitigating the modeling-
uncertainty impact would be no less than that for mitigating the
parameter-uncertainty impact. This is extremely significant when
the coefficient of variance (CV) is not larger than 40%. The increased

ty Uncertainty Uncertainty sources Model

CV

– – – DOM
– Modeling uncertainty Proxy simulator residuals SOMUM

l 10% Parameter uncertainty Physical property SOMUP
l 20% Parameter uncertainty Physical property SOMUP
l 40% Parameter uncertainty Physical property SOMUP

mean value; DT denotes distribution; – means uncertainty is not considered.
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This study only addressed the impact of modeling uncertainty
ig. 8. Comparison of optimization results under scenarios S1–S5 for a remediation
eriod of (a) 5 years and (b) 15 years.

ost in scenario S2 would be less than that in scenario S5, sug-
esting parameter uncertainty has the most significant impact on
emediation cost, while modeling uncertainty is the second most
ignificant. Fig. 8(b) also illustrates the increased remediation cost
or mitigating modeling-uncertainty impact would be higher than
hat in the scenarios with the CVs being lower than 40%.

This evidence implies that the impact of modeling uncer-
ainty on groundwater remediation design can hardly be ignored.
lthough part of the previous studies suggested that the intro-
uced proxy simulators have achieved satisfactory approximation
erformance, ignoring the impact of modeling uncertainty may
ause the increase in the risk of system failure due to potential
nvironmental-standard violation. This finding could be partic-
larly favored by system designers who are willing to spend
dditional money to lower the potential risk of systems failure.
nfortunately, most of the previous studies focused on addressing
arameter uncertainty rather than accounting for modeling uncer-
ainty. This new evidence could stimulate more future efforts to be
ndertaken focusing on investigation and mitigation of modeling-
ncertainty impact on remediation design.

Figs. 7 and 8 also indicate that the optimal total pumping rates
btained from DOM would be lower than those from SOMUM. This
ccurs because that more contaminated groundwater should be
xtracted to mitigate the effects of modeling uncertainty. Corre-
pondingly, more clean water should be injected to satisfy the
nvironmental constraint. The increased requirement for extrac-
ion and injection would thus lead to the rise of total pumping
ate. It seems that the SOMUM strategies are rather conservative
ompared to the DOM ones, due to the need of mitigating model-
ng uncertainty. However, in practice, inaccurate proxy-simulator
orms, missing variables, biased parameters and sampling errors

an frequently lead to deviations of outputs, inducing the originally
optimal” solutions to be no more optimal. As the exclusion of this
ncertainty from the optimization formulation would lead to a risk
f system failure, SOMUM (as a rather robust formulation) would be
aterials 176 (2010) 527–534 533

much preferred due to its adaptability to accommodate uncertainty
in proxy simulators. Nonetheless, this design would lead to the
increase of remediation cost along with the growth of total pump-
ing rate. Therefore, there is a trade-off between system-failure risk
and remediation cost. This trade-off issue may be addressed using
multi-objective or goal programming techniques. In addition, mul-
ticriteria decision analysis can also be employed to evaluate the
performance of each of remediation strategies identified through
the above techniques.

5. Discussion and conclusions

The hypothesis test results indicate that the assumptions for the
residuals of proxy simulators can be accepted statistically. How-
ever, this does not imply that they are also acceptable under other
conditions. When the model is extended to other sites, therefore,
the assumptions should be re-tested based on simulation results
reflecting the flow and transport of contaminants in new aquifers. If
the normality test fails, non-normal (e.g., uniform and gamma) dis-
tributions may be assumed and tested for the residuals. Moreover,
the proposed SOMUM model can be extended to systems where
other learning algorithms are used, such as artificial neural net-
works [8,9], robust regression [10], regression tree [11], support
vector regression [12], and stepwise cluster analysis [2,13]. How-
ever, the testing results may vary with the learning algorithms,
statistical samples and normality testing methods. Therefore, care
should be taken when the model is applied to other studies.

The logarithms of residuals were assumed normally distributed
and then verified through Lilliefors and Jarque–Bera tests. The Lil-
liefors test, based on the Kolmogorov–Smirnov test, was proposed
to test the hypothesis that the data come from normally distributed
residuals, whose expected values and variances were not specified.
However, it could be relatively weak since a large number of data
are required to reject the normality hypothesis [14]. Therefore, the
Jarque–Bera test, as a more sensitive manner based on classical
measures of skewness and kurtosis, was also conducted to test the
normality of residuals. The testing results show that most of the
residuals are lower than the respective critical values under the
significance level of 0.01, indicating that the normality hypothesis
can hardly be rejected. Meanwhile, the t-test was used to deter-
mine whether or not the residuals have zero means. It is found that
the zero-mean assumption for all residuals of the proxy simulators
could be accepted.

The optimal remediation strategies were determined by solving
the SOMUM problem under four scenarios representing different
remediation periods. It is found that a long remediation period
would generate a low total pumping rate, while an enhanced level
would raise the total pumping rate; the peak benzene concentra-
tions would be lower to satisfy the environmental standard.

The solutions were also compared to those obtained from the
conventional SOMUP and DOM models. Although the SOMUM
strategies were not as cost-effective as the DOM and part of SOMUP
strategies, SOMUM could be preferred due to its good adaptabil-
ity to negligible uncertainty in proxy simulators. To summarize,
SOMUM has the advantages of (1) providing mean-variance anal-
ysis for the response variables (contaminant concentrations), (2)
mitigating the effects of the uncertainty in proxy-model residuals
on optimal remediation strategies, (3) offering quantitative infor-
mation (i.e. confidence level of optimal remediation strategies) to
system designers, and (4) reducing the computational cost in opti-
mization processes.
associated with proxy-simulator residuals. However, parameter
uncertainty may also affect optimal remediation strategies [15,16].
Future studies would be undertaken to mitigate both effects by
improving the proposed SOMUM model. Dual response surface
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ptimization could be effective in solving this problem. Its basic
dea is to create two sets of proxy simulators, respectively pre-
icting the mean values and deviations of model outputs. The
rediction results can then be simultaneously input into the opti-
ization model, by regulating that: the mean values of predicted

ontaminant concentrations are less than the environmental stan-
ard; the deviations stemming from the original simulator are

owered to an acceptable level.
The remediation duration is rather long, probably lasting over

0 years. However, the remediation strategies identified through
his model were based on an assumption that the hydrogeologi-
al parameters will not be subjected to the effect of variability or
hanges in climatic conditions. For example, the intrinsic perme-
bility was assumed not to vary with the change of ambient or
roundwater temperature. However, no evidence in this study has
hown whether this assumption would introduce significant mod-
ling errors. Thus, a future research subject is to take into account
he climatic variability and/or changes in the remediation design.
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